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We propose solitons in a photonic topological insulator: self-localized wave packets forming topo-

logical edge states residing in the bulk of a nonlinear photonic topological insulator. These self-forming

entities exhibit, despite being in the bulk, the property of unidirectional transport, similar to the transport

their linear counterparts display on the edge of a topological insulator. In the concrete case of a Floquet

topological insulator, such a soliton forms when a wave packet induces, through nonlinearity, a defect

region in a honeycomb lattice of helical optical waveguides, and at the same time the wave packet

populates a continuously rotating outer (or inner) edge state of that region. The concept is universal and

applicable to topological systems with nonlinear response or mean-field interactions.
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Topological insulators are a new state of matter [1–4]
with the striking property of robust, scatter-free conduction
on the edges in the two-dimensional case. Such scatter-free
conduction manifests itself in the topological protection of
the edge states, which arises from strong spin-orbit cou-
pling and a fermionic property called ‘‘Kramer’s degener-
acy’’ [5]. Similar robust and scatter-free edge conduction
can be achieved by applying a strong magnetic field, thus
breaking time-reversal symmetry and giving rise to the
quantum Hall effect [6]. In the past few years, there have
been numerous propositions to realize topological insula-
tion for electromagnetic waves [7–12]. Apart from many
intriguing issues having to do with topological protection
in photonic media, the study of photonic topological
insulators can lead to advances in many related areas.
For example, optical delay lines can be made more robust
by topologically protected transport [10]. Likewise, the
unidirectionality feature of topological insulators can
offer novel designs for optical isolators [12]. In a different
domain, the mathematical equivalence between the
Schrödinger equation and the paraxial wave equation in
photonics [13,14] opens up the possibility of exploring
related novel phenomena such as topological Anderson
insulators [15] and Floquet topological insulators [16–18],
which are exceedingly difficult to study experimentally in
solid state systems.

The bosonic nature of photons implies the necessity of
a different mechanism to achieve topological protection.
One path to achieve the goal of scatter-free propagation
is similar to the quantum Hall effect, where a strong
magnetic field is used to break time-reversal symmetry
and hence eliminate backscattering. Indeed, this idea was
suggested [7,19] and demonstrated experimentally [20]
in gyro-optic photonic crystals, where the magnetic field
induces topological protected edge states. However, mag-
netic effects are negligibly small at optical frequencies.
Hence, a number of theoretical suggestions were made
[8–12] for designing a field-free photonic medium with

topologically protected transport. The first experimental
demonstration of such a system was published recently
[21], drawing on the idea of Floquet topological insula-
tors, in which specifically designed modulation gives rise
to topological protection [16,17,22,23]. That particular
photonic topological insulator was implemented in ‘‘pho-
tonic graphene’’ [24], an array of waveguides arranged as
a honeycomb lattice, where the modulation causing the
topological protection was achieved by making the wave-
guides helical [21]. Another demonstration of topological
edge states, in coupled resonator arrays, followed later
[25], and similar attempts are currently under way in cold
atoms systems.
This Letter deals with nonlinear effects in photonic

topological insulators. Indeed, nonlinearity is a fundamen-
tal aspect of optics. It allows for light to control light via
the nonlinear response, and enables a variety of important
phenomena such as spatial solitons [26], modulation insta-
bility [27], frequency conversion and more. Furthermore,
when the optical nonlinearity is of the Kerr type, there is a
direct mathematical equivalence between nonlinear optics,
described by the nonlinear Schrödinger equation and the
mean-field description of interactions in Bose-Einstein
condensates [13,14]. Therefore, studying nonlinear aspects
of photonic topological insulators may also lead to advan-
ces in the understanding of topological phenomena in other
physical realizations.
Here, we propose solitons in a photonic topological ins-

ulator: self-localized wave packets forming topological
edge states residing in the bulk of a nonlinear Floquet
photonic topological insulator. Such self-localized wave
packets continuously rotate while recreating their shapes
periodically, with every cycle of rotation. This kind of a
self-trapped wave packet exists by nonlinearly inducing a
defect in the bulk of a photonic topological insulator, and
populating its own self-induced defect state. The defect then
acts as a small domain, and the wave packet rotates around
the edge of that domain as an edge state. The induced
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defect supporting such a wave packet can also operate
as an ‘‘inner edge’’ (‘‘hole’’) in the lattice. In both cases,
there is energy flow in the direction dictated by the topo-
logical edge state of the underlying structure. Our specific
physical system is the same as in Ref. [21]: helical wave-
guides arranged as a honeycomb lattice. However, the
results presented here are universal—applicable to other
photonic topological insulator systems [12,28] and to other
systems in photonics and beyond, such as exciton-polariton
superfluids [29–34], cold atom systems with interactions
[35–37], and wherever the underlying physics is described
by a Schrödinger-like wave equation.

We begin by describing the underlying linear system.
Our system is a two-dimensional waveguide array arranged
in a honeycomb lattice. Generally, the array can be
described by a tight-binding model (or coupled mode
theory) with a discrete set of equations, written as,

i@zunðzÞ ¼
X

hmi
cnmumðzÞ; (1)

where the sum is over neighboring sites according to the
honeycomb geometry, and the coefficients cmn are the
coupling constants between nearest neighbors. Consider
the honeycomb lattice of straight waveguides [24], which
is the photonic equivalent of graphene. In this case, the
coupling coefficients are equal and constant for nearest
neighbors: cnm ¼ c. In this ‘‘ordinary’’ honeycomb lat-
tice, the first and second bands intersect (without a gap),
forming Dirac cones at the corners of the Brillouin zone
[24], as is shown in Fig. 1(b). Such a system has trivial
topology [21]. To form a Floquet topological insulator,
the waveguides can no longer be straight, and take a
helical shape with a given longitudinal frequency �
and radius R [Fig. 1(a)]. In the frame of reference in
which the waveguides are stationary, the spinning of the
waveguides can be described by introducing a vector
potential AðzÞ ¼ A0½cosð�zÞx̂þ sinð�zÞŷ�=a to the sys-
tem [21,38]. Here, a is the lattice constant, and A0 is a
measure of the spinning radius. Thus, the coupling coef-
ficients are modified according to the Peierls’ substitution
and yield

i@zunðzÞ ¼
X

hmi
ceiAðzÞ�rmnumðzÞ; (2)

where rmn is the displacement between waveguides m and
n. Because the right-hand side of Eq. (2) is z dependent,
there are no static eigenmodes. Instead, we can define
Floquet eigenmodes of the system, based on the fact that
in Eq. (2), written as i@zunðzÞ ¼

P
hmiHnmðzÞumðzÞ, the

Hamiltonian HmnðzÞ is periodic with period � ¼ 2�=�
[16,17]. The Floquet eigenmodes are unðzÞ ¼ ei�z’nðzÞ
with ’nðzÞ being � periodic, and � is the Floquet eigen-
value or ‘‘quasienergy.’’ Note that, by definition, the
values of � obey ��=2<�<�=2. Thus, we can write

unðzþ�Þ ¼ unðzÞei��, that is, the wave function unðzÞ
self-reproduces every � up to a phase. For example, the
spectrum for a system with � ¼ 3c and A0 ¼ 3 is shown
in Fig. 1(c), and for a system with � ¼ 6c and A0 ¼ 2 in
Fig. 1(d). One can clearly see the spectrum in both of these
is no longer gapless. The opening of the gap is a conse-
quence of the spinning of the waveguides, which breaks
z-reversal symmetry and opens a gap in a mechanism
similar to the Haldane model [39]. Inside the gap reside
edge states, which are localized states at the edges of finite
systems. Because of the topological nature of the system
[21,23], these ‘‘chiral’’ edge states have well-defined
group velocity and directionality. This means that the
edge states are not stationary: they must travel in a given
direction, and cannot travel in the opposite direction or
stay stationary [21]. In our system, for all parameters of
interest, the edge states always rotate clockwise, as sche-
matically shown in Fig. 1(a). These edge states exhibit
topological protection: they do not scatter into the bulk nor
do they backscatter. This system is exactly a Floquet
topological insulator [16,17].
Next, we add nonlinearity to the system, and study

nonlinear self-localized solutions in the system, i.e., sol-
itons. The nonlinearity we introduce to the system is of the
Kerr type, which is also manifested as interactions for cold
atom systems. Equation (2) is now transformed into

i@zunðzÞ ¼
X

hmi
HnmðzÞumðzÞ � �junðzÞj2unðzÞ; (3)

where � ¼ �1 denotes the sign of the nonlinearity, and
the strength of it is determined by the magnitude of un.

(a) (b)

(c) (d)

FIG. 1 (color online). (a) Sketch of the honeycomb photonic
lattices of spinning waveguides. The rotation axis is in the z
direction. The arrow illustrates the propagation direction of
topologically protected edge states residing at the edges of the
honeycomb lattice. (b) Spatial spectrum (propagation constant vs
transverse momentum) of photonic grapheme with straight
waveguides. (c),(d) Spatial spectra in cases of periodicity
� ¼ 3c and radius A0 ¼ 3, and � ¼ 6c and radius A0 ¼ 2,
respectively.
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We look for localized solutions in the Floquet sense: wave
packets that self-reproduce after a period, but their shape
is allowed to vary (and in fact does) within each period.
We look for nonlinear solutions using the self-consistency
method (commonly used to find solitons in periodic struc-
tures [40]), modified to find self-consistent solutions in the
Floquet sense. The self-consistency process is described in
[41]. We find solitons in the first gap, emerging from the
anomalous dispersion (negative effective mass) region in
the first band. For such solitons, the nonlinearity is of the
defocusing type: � ¼ �1 (corresponding to repulsive
interactions in cold atom systems). In a similar fashion,
one can find fully equivalent gap solitons emerging from
the second band under a focusing nonlinearity. In all the
examples described in this Letter, we use a system of 338
waveguides (lattice sites), arranged in a parallelogram of
13� 13 unit cells. The wave packet is always at the center,
well away from the edges of the system. To make sure there
are no effects that result from the finite size of the system,
we repeated the calculations for different system sizes, and
observed no change in the results.

We find self-localized wave packets of different fami-
lies. We begin by looking for self-localized wave packets
that are centered on a site. Consider a concrete example of
a honeycomb lattice of helical waveguides under the para-
meters A0 ¼ 3 and� ¼ 3c, for which the gap in the linear
system occurs for �0:44c < �< 0:44c. Naturally, the
self-localized wave packets reside in this gap. Figure 2(a)
shows the self-localized wave packets’ power, defined
as P ¼ P

njunj2, vs quasienergy. We find that the intensity
structure rotates continuously, recreating itself every
period. Figures 2(b)–2(d) show the intensity structure of
a self-localized wave packet with P ¼ 4 and � ¼ 0:08c,
where the intensity is shown every one third of a period.
Only the region of the whole lattice where intensity is
significant is displayed. Figure 2(e) sketches the rotation
of the intensity structure of the wave packet. We determine
the direction of rotation also quantitatively, by calculating
the energy flow [Fig. 2(f)]. Because the vector potential

AðzÞ is z dependent, we cannot expect stationary nonlinear
solutions (such as bright gap solitons in 2D lattices [42]).
In fact, the rotation of the wave packet [Fig. 2(e)] is a direct
consequence of the fact that the system is topological in
nature. Namely, like edge states of a topological insulator,
this nonlinearly self-trapped wave packet rotates in a spe-
cific direction. In the case depicted in Fig. 2, we can see
that the wave packet inhabits mainly four sites; hence, we
can treat the nonlinear change in the potential (induced
by the self-localized wave packet) as a four-site defect.
This induced defect has edges and edge states. However,
because the defect is spatially small, Every point on the
defect is on its edge; hence, this wave packet can be
interpreted as a self-localized edge state. In fact, recalling
the honeycomb geometry and looking at the geometry of
the wave packet in Fig. 2(e), we can say that the shape
of the self-localized wave packet constitutes the smallest
system possible, having well-defined topological edge
states [43]. Thus, the self-localized wave packet is a self-
induced edge state inside the bulk of the topological insu-
lator, rotating in the direction prescribed by the topological
properties of the system. Here, this direction is clockwise,
which coincides with the helicity of the lattice. We find that
all self-localized states residing on the existence curve of
Fig. 2(a) have similar intensity structures and exhibit the
same behavior, namely, corotating with the lattice.
We now look for different self-localized wave packets:

those that are centered at the center point of a hexagon in
the lattice. As an example, consider the lattice with para-
meters A0 ¼ 2 and � ¼ 6c, under which the gap in the
linear system is for �0:32c < �< 0:32c. We find self-
localized wave packets residing on the existence curve
depicted in Fig. 3(a). A typical intensity structure of such
a wave packet is shown in Fig. 3(b) for a self-localized
wave packet with P ¼ 10 and�¼�0:13c. Only the region
of the whole lattice where intensity is significant is dis-
played. Here, the wave packet occupies mainly six sites,
and its intensity structure is approximately constant inside
a period. The six sites occupied form the smallest closed
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FIG. 2 (color online). (a) Existence curve of power vs quasienergy for solitons with� ¼ 3c and A0 ¼ 3. The black dot is the soliton
with P ¼ 4. (b),(c),(d) A small region of the lattice, displaying the intensity profile of the soliton with P ¼ 4 at z ¼ 0, z ¼ Z=3, and
z ¼ 2Z=3, respectively. The white circles denote lattice sites. (e) Schematics of intraperiod power flow. (f) Calculation of power flow
between the soliton’s main four sites.
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loop possible in the honeycomb geometry. Importantly,
despite the constant intensity inside a period, we can still
identify the self-localized wave packet as a rotating self-
induced edge state. We do so by calculating the power flow
between sites inside one period. The energy flow is shown
schematically in Fig. 3(c), and quantitatively in Fig. 3(d).
We can clearly see a constant, unidirectional power flow in
the self-localized wave packet. This flow is significant—
the overall flow over a period from one site to the next is
about 70% of the average power in these sites. This means
that 70% of the total power in the main six sites of the
wave packet is flowing around the hexagon over a period.
Interestingly, the flow in this case [for all wave packets
residing on the existence curve of Fig. 3(a)] is in a counter-
clockwise direction, opposite to the global edge-state uni-
directional flow sketched in Fig. 1(a) and opposite to the
spinning direction of the lattice. This can be understood as
the induced defect acting as an inner hole, where its edges
are inner edges. Basic geometric arguments show that for a
system where the outer edge states flow clockwise, the
inner edge states should flow counterclockwise, as happens
here. One can see that the wave packet in Fig. 3(b) acts as
an edge state residing on the edges of an inner hole using
the following arguments. The intensity structure of this
wave packet forms a closed loop, which constitutes the
smallest possible loop in the honeycomb geometry. There
is no site inside this loop; hence, the induced defect has a
hole in its center. Thus, this induced ‘‘defect hole’’ serves
as an inner edge for the bulk. In Fig. 4 we show sche-
matically different inner edges, where it is clear that—
when looking at smaller and smaller inner edges—our

self-localized wave packet populates the smallest inner
edge possible in a honeycomb geometry. An additional
geometrical argument for the classification of our wave
packet as an inner edge is given in the Supplemental
Material [41]. Self-localized wave packets with the same
property of being inner holes can also be found with the
parameters A0 ¼ 2 and � ¼ 3c.
As with all solitons, it is important to examine the

stability of our self-localized edge states, which we analyze
using both linear stability analysis and numerical simula-
tions. We find that all the self-localized wave packets on the
existence curves of Figs. 2(a) and 3(a) are unstable, but the
instability can be extremely weak. Quantifying the insta-
bility by the number of cycles � it takes the wave packet
to break up, we find that the instability ranges from tens
of cycles to thousands of cycles throughout the existence
curve. Thus, despite their instability, these self-localized
wave packets can be long-lived and therefore unequivocally
observable and of important physical significance.
In conclusion, we presented nonlinear self-localized

wave packets in topological insulators. These wave packets
are self-induced edge states inside the bulk, and thus rotate
with a predetermined directionality. The self-induced edge
states can be either outer edges or inner edges, depending on
the specifics of the underlying linear system. These non-
linear wave packets are unstable, but long lived, and thus
contain much physical significance. Other physical proper-
ties would be of great interest—especially the dynamics of
multiple such solitons under collisions. Our work lays the
groundwork for further study of the effects of nonlinearity
in topological insulators in a variety of systems—in optics,
exciton-polaritons systems, and cold atoms.
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